Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments

نویسندگان

  • Dawn E. Holmes
  • Ludovic Giloteaux
  • Roberto Orellana
  • Kenneth H. Williams
  • Mark J. Robbins
  • Derek R. Lovley
چکیده

Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.

The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogeni...

متن کامل

Microbial production and oxidation of methane in deep subsurface

The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the ‘‘greenhouse’’ effect in the planet’s atmosphere. Earlier, the deep ‘‘organic carbon poor’’ subsurface was not considered as a source of ‘‘biogenic’’ methane. Evidence of active methanogenesis and presence of via...

متن کامل

Contribution by the Methanogenic Endosymbionts of Anaerobic Ciliates to Methane Production in Dutch Freshwater Sediments

Biogenic methane contributes substantially to the atmospheric methane concentration and thus to global warming. This trace gas is predominantly produced by strictly anaerobic methanogenic archaea, which thrive in the most divergent ecological niches, e. g. paddy fields, sediments, landfills, and the digestive tract of various animals. Methanogenic archaea also live as endosymbionts in the cytop...

متن کامل

Real-time monitoring of subsurface microbial metabolism with graphite electrodes

Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in...

متن کامل

Flowthrough reactor flasks for study of microbial metabolism in sediments.

Flowthrough reactor flasks are described that allow continuous low-level nutrient input to mixed anoxic sediments without dilution of the sediment. The flasks were tested by simulating sulfate inputs into sediments collected from a freshwater eutrophic lake. After an initial 2-day adaptation within the reactor system, rates of methane production and sulfate consumption were constant for the dur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014